

Presentation Outline:

"AN ANALYSIS OF LOW CONSTANT FUME HOODS: EFFECTIVENESS AND ACCEPTANCE"

- I. Most laboratory casework manufacturers are now developing and marketing new fume hoods with several objectives:
 - A. Reduce exhaust flow

Example: dynamic barrier fume hood

Nominal Width	Bypass Exhaust (CFM)	Bypass Annual Energy Cost	dynamic barrier Exhaust (CFM)	dynamic barrier Annual Energy Cost
4' Bench	810	\$ 2430	225	\$ 675
5' Bench	1050	\$ 3150	280	\$ 840
6' Bench	1290	\$ 3870	350	\$ 1050
8' Bench	1770	\$ 5310	485	\$ 1455

B. Exhibit good ANSI/ASHRAE 110-1995 containment characteristics, both as manufactured and as installed.

- C. Simplify design to minimize maintenance and repair
- II. The researcher investigated the above design objectives using both inhouse and field testing.
 - A. Based on specific design parameters, exhaust was reduced by 40%-70%
 - B. Containment characteristics are good for low constant volume hoods manufactured by Kewaunee, but need to be taken with a grain of salt. (Face velocity vs. sash opening)
 - C. Maintenance and repair needs to be combined with fume hood training issues.